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Abstract
In Computational Argumentation, understanding how an Abstract Argumentation Framework (AF) is instantiated
is crucial for capturing and possibly exploiting structural and dynamic aspects of the argumentative process.
To facilitate the reconstruction of this process and, precisely, to determine the order in which arguments are
presented, we introduce the notion of semantics-aware evaluation order. This approach relies on two fundamental
concepts: syntactic dependence, derived from attack relations within the AF, and semantic dependence, which
assesses the impact of an argument on the acceptability of others. Integrating these dependencies provides a more
meaningful sequence for presenting arguments, improving its alignment with real-life scenarios and enriching
the exploration of debate dynamics.
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1. Introduction

Artificial Intelligence (AI) applications often produce results that may not seem transparent or reliable,
reducing users’ confidence in them. This is particularly crucial in sensitive areas like healthcare and
finance, where understanding the rationale behind AI-generated outcomes is vital. Argumentation
Theory [1] explores how to manage and reason with conflicting information, and Argumentation
Frameworks have, in the last decades, become a consolidated tool to examine and replicate human
reasoning for logically deriving conclusions starting from a set of premises. In general, non-monotonic
reasoning offers the key advantages of flexibility and adaptability, mirroring real-world scenarios
more closely by allowing conclusions to be revised or retracted in the face of new evidence. This
approach is crucial for dealing with incomplete or evolving information, offering a practical way to
instantiate and study complex, dynamic processes. In healthcare, argumentation-based systems have
been proposed to support clinical decision-making [2, 3, 4]. For instance, they can be used to model the
reasoning behind different diagnostic or treatment options, allowing medical professionals to compare
the underlying logic of various choices and explaining these choices to patients, thereby enhancing trust
in medical AI systems. In cybersecurity, Argumentation Theory finds application in risk assessment and
management [5, 6, 7]. By simulating the logic underpinning security protocols and analysing potential
vulnerabilities, the proposed systems increase the clarity of decision-making processes, identifying
relevant risks and corresponding mitigations.

To simplify complex real-world reasoning processes and predispose them to computational and
automated problem-solving approaches, one can abstract from the internal logic of arguments and focus
solely on the interaction between them. The systems resulting from this abstraction are called Abstract
Argumentation Frameworks (AFs) [8], visualised as directed graphs with nodes and edges representing
arguments and their conflicts, respectively. Solving an argumentation problem formulated through
an AF boils down to assessing the acceptability of its arguments through so-called argumentation
semantics, i.e., criteria for selecting sets of arguments, known as extensions, that exhibit internal
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consistency and collectively withstand external challenges. These extensions encapsulate coherent
positions or viewpoints within the framework. Consider, for example, the following three arguments:

𝑎: “Everyone should eat more vegetables to reduce the risk of chronic diseases.”
𝑏: “Excess consumption of certain vegetables can lead to nutrient overdoses.”
𝑐: “Vegetable-induced nutrient overdoses are rare and manageable with a varied diet.”

It is easy to see the conflict between them, i.e., 𝑎 is attacked by 𝑏, which is, in turn, attacked by 𝑐. By
abstracting from the sense of the individual arguments and considering only the relation between them,
we can establish which arguments agree and can, therefore, be accepted together. In this example, 𝑎 and
𝑐 share the same point of view; in fact, 𝑐 counters the attack of 𝑏 against 𝑎. Therefore 𝑎 and 𝑐 together
form an extension (with respect to the complete semantics [9]) for the examined AF.

While AFs offer clear benefits for the representation and resolution of argumentative problems, they
also have drawbacks related to their inherent simplicity, which makes them ineffective in capturing
certain fundamental aspects of human reasoning [10]. One particular disadvantage is that an AF provides
only a static representation of a given argumentative process, thus not allowing an understanding of
the dynamics that resulted in the establishment of such a framework. For instance, the argument 𝑐
introduced earlier (nutrient overdoses are rare) is likely presented in response to argument 𝑏 (vegetables
can lead to nutrient overdoses), yet the abstraction inherent in AFs makes deducing the dependency
between arguments non-trivial. Various studies [11, 12, 13, 14, 15] have explored how dynamic aspects
can be incorporated into AFs via enhanced frameworks and systems that allow for the integration of
new information or changes. Despite these advancements, the literature does not address the problem
of tracing the process that leads to the generation of a specific AF.

To bridge this gap, we proposed in [16] to interpret AFs as dependency graphs in which the attacking
arguments depend on the attacked ones. This approach aids in understanding the mechanism behind
the generation and evolution of an AF, determining a feasible evaluation order in which arguments
are introduced. In particular, we can establish a meaningful sequence for presenting the arguments
without knowing their meaning or internal logic. In correspondence with cycles, following a feasible
evaluation order produces some sequences of arguments that do not represent realistic scenarios. In
fact, the choice of arguments within cycles to be evaluated first is nondeterministic. In this paper, we
revisit the process of evaluating arguments within cycles by introducing semantic dependency as a key
distinguishing factor. This concept is based on the notion that certain arguments conduct attacks that
are crucial for determining the acceptability state of the arguments they target, whereas others may not
have such a significant impact. In order to demonstrate the effectiveness of the new semantics-aware
evaluation order that we introduced, we analyse two examples of instantiation of AFs modelling real
situations. These examples show that our latest approach discards some meaningless sequences of
arguments. We also provide an automated procedure for instantiating AFs following a semantics-aware
evaluation order for the arguments.

With this work, therefore, we aim to address a limitation of AFs, namely the impossibility of represent-
ing the temporal evolution of a dialogue in which arguments come into play following precise dynamics
dictated by the type of interaction. The static representation intrinsic to AFs limits the applicability
of abstract argumentation in domains where the sequence and interdependence of arguments are
crucial. By introducing a semantics-aware order of evaluation that integrates syntactic and semantic
dependencies, we want to align AFs more closely with real-life argumentative processes and enhance
the expressive power they can assume within critical AI-based applications.

The paper is organised as follows: Section 2 introduces basic notions of Computational Argumentation,
along with the feasible evaluation order and an overview of cla. Section 3 illustrated the concept of
semantic dependency and the resulting semantics-aware evaluation order. Section 4 presents practical
examples applying this order in real-world scenarios. Section 5 outlines a methodology for instantiating
any AF following the semantics-aware evaluation order. The paper concludes in Section 6 with a
discussion of the results and future research directions.



2. Background

This section briefly reviews the notion of AFs, argumentation semantics, and feasible evaluation order
for arguments within an AF. Additionally, we cover aspects of the cla syntax and its operational
semantics, which are instrumental in implementing our proposed methodology.

2.1. Computational Argumentation

Argumentation Theory is focused on understanding and mimicking the natural way humans reason,
particularly in handling uncertainties through non-monotonic (defeasible) reasoning. In his influential
paper [8], Dung sets out the fundamental components of abstract argumentation.

Definition 1 (AFs). An Abstract Argumentation Framework is a pair ⟨Arg, 𝑅⟩ where Arg is a finite set of
arguments and 𝑅 is a binary relation on Arg.

For any two arguments 𝑎, 𝑏 ∈ Arg, the notation (𝑎, 𝑏) ∈ 𝑅 indicates an attack from argument 𝑎
against argument 𝑏. Furthermore, we use 𝑎+ and 𝑎− to denote the sets of arguments that, respectively,
are attacked by and attack 𝑎. Within an AF, our goal is to identify subsets of acceptable arguments, which
are determined by applying specific criteria known as argumentation semantics. Arguments not deemed
acceptable are consequently rejected. Various semantics have been devised to encapsulate desirable
qualities for sets of arguments. Among the most extensively studied semantics are complete, stable,
semi-stable, preferred, and grounded semantics [8, 9]. To practically identify acceptable arguments, one
can use labelling-based semantics [17], which assign labels to arguments to assert their acceptability
state.

Definition 2 (Labelling). A labelling of an AF 𝐹 = ⟨Arg, 𝑅⟩ is a function 𝐿𝐹 : Arg → {IN,OUT,UND}.
We will omit the referenced AF 𝐹 when evident from the context. Moreover, we have that

• 𝐿 is a complete labelling for 𝐹 when, ∀𝑎 ∈ Arg

– 𝐿(𝑎) = IN ⇐⇒ ∀𝑏 ∈ Arg | (𝑏, 𝑎) ∈ 𝑅.𝐿(𝑏) = OUT
– 𝐿(𝑎) = OUT ⇐⇒ ∃𝑏 ∈ Arg | (𝑏, 𝑎) ∈ 𝑅 ∧ 𝐿(𝑏) = IN

• 𝐿 is a grounded labelling for 𝐹 when

– 𝐿 is a complete labelling, and
– {𝑎 ∈ Arg | 𝐿(𝑎) = IN} is minimal among all the complete labellings

We will write 𝐿𝜎 to identify a labelling of an AF with respect to the semantics 𝜎. Under the complete
semantics, an argument receives the label IN if and only if every argument that attacks it is labelled
OUT. Conversely, it is labelled OUT if it is attacked by at least one IN argument. In situations that
do not meet these conditions, the argument is labelled UND. Specifically, arguments labelled IN are
considered acceptable, whereas arguments with other labels are rejected. This approach to labelling is
extended in [17] to define other argumentation semantics besides the complete and the grounded ones.

Besides computing the possible labellings with respect to a certain semantics 𝜎, one of the most
common tasks performed on AFs is to decide whether an argument 𝑎 is accepted (labelled as IN) in
some labelling or in all labellings. In the former case, we say that 𝑎 is credulously accepted with respect
to 𝜎; in the latter, 𝑎 is instead sceptically accepted with respect to 𝜎.

2.2. Feasible Evaluation Order

In AFs, attacks among arguments establish a dependency relation between them. In particular, an
argument depends on the other argument it attacks. Therefore, an AF can be viewed as a dependency
graph 𝐷 = ⟨𝑆, 𝑇 ⟩, where 𝑆 is a set of elements and 𝑇 is the transitive reduction of a dependency
relation 𝑅 ⊆ 𝑆 × 𝑆. Such a graph allows for identifying a correct evaluation order that respects the
dependencies, ensuring that if an argument 𝑎 precedes argument 𝑏 in the order, 𝑎 does not depend on 𝑏.



Finding a correct evaluation order for the arguments of an AF can be thought of as mapping the process
that led to the instantiation of the AF. This task is made challenging by possible cycles in the AF, which
create circular dependencies where arguments depend on each other. We use the following notation to
represent the set of arguments that form a cycle with a given argument 𝑎, encapsulating all potential
circular dependencies for 𝑎.

Notation 1 (Circular Dependency). Given an AF 𝐹 = ⟨Arg, 𝑅⟩, we call cycle any subset of Arg whose
elements form a cycle in 𝐹 . Then, we denote with Cycles(𝐹 ) the set of all cycles in 𝐹 , and with ArC(𝐹 ) =⋃︀

𝐶∈𝐶𝑦𝑐𝑙𝑒𝑠(𝐹 )𝐶 the set of all arguments belonging to cycles in 𝐹 . Moreover, CiD(𝑎) = {𝑏 ∈ Arg | ∃𝐶 ∈
Cycles(𝐹 ) such that 𝑎, 𝑏 ∈ 𝐶} is the set of arguments in circular dependency with 𝑎.

In the presence of circular dependencies, it is unclear which argument should come first in the order of
evaluation. To overcome this issue, we consider each cycle as an agglomeration of arguments, focusing
on their connections to adjacent arguments outside the cycle. The evaluation sequence is structured
for arguments outside these cycles so that attacked arguments precede their attackers. Conversely,
any ordering represents a viable solution for arguments within a cycle. This approach enables the
formulation of a feasible evaluation order [16], where dependency among arguments within a cycle is
not influential, and their ordering relative to arguments outside the cycle is defined.

Definition 3 (Feasible Evaluation Order). A feasible evaluation order for an AF 𝐹 = ⟨Arg, 𝑅⟩ is a
numbering 𝑛 : Arg → N such that for any two arguments 𝑎, 𝑏 ∈ Arg with 𝑛(𝑎) < 𝑛(𝑏), the following
holds: if 𝑎 /∈ CiD(𝑏) then ∀𝑐 ∈ {𝑎} ∪ CiD(𝑎), 𝑑 ∈ {𝑏} ∪ CiD(𝑏).(𝑐, 𝑑) /∈ 𝑅.

Figure 1: Example of an AF containing a cycle.

Example 1. Referring to the AF shown in Figure 1, we can verify that (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) and (𝑎, 𝑐, 𝑑, 𝑏, 𝑓, 𝑒)
are two feasible evaluation orders. The first argument to be introduced is 𝑎, which is succeeded by 𝑏, 𝑐, 𝑑
in any order, with 𝑒 and 𝑓 always following them. In particular, we observe that any argument between
𝑏, 𝑐, 𝑑 can be nondeterministically chosen as the first argument of the cycle to be introduced, while 𝑒 and 𝑓 ,
which depend on the same argument, can be introduced concurrently in the AF immediately after 𝑑 and
the arguments of its circular dependencies have been added.

Therefore, in order to model the instantiation process leading to the generation of this AF, we need a
tool capable of manipulating AFs and supporting nondeterminism and parallel operations. To this end,
we have chosen to use the Concurrent Language for Argumentation, described below, which, in addition
to the features listed above, is already set up for the study of argument acceptability, a feature we will
use with the aim of exploiting semantics to establish a refined order for evaluating the arguments.

2.3. Concurrent Language for Argumentation

The Concurrent Language for Argumentation (cla) [18] is a tool devised for simulating concurrent
interactions among agents engaged in reasoning and decision-making via argumentation processes.
Agents utilise cla constructs to access and manipulate a shared knowledge base encapsulated within
an AF. In the following, we provide a shortened version of the cla syntax and operational semantics,
which we will use in the next section, referring to [18] for a thorough discussion of the language.



In Table 1, 𝑃 denotes a generic process, 𝐶 a sequence of clauses, 𝐴 an agent and 𝐸 a guarded agent.
In a cla process 𝑃 = 𝐶 .𝐴, 𝐴 is the initial agent to be executed within the context of the declarations 𝐶 .
The operational model of 𝑃 is formally described by a transition system 𝑇 = (Conf ,→), where 𝐶𝑜𝑛𝑓
consists of a process and an AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩ representing the shared knowledge base.

Table 1
Snippet of cla syntax

𝑃 ::= 𝐶.𝐴

𝐶 ::= 𝑝(𝑥) :: 𝐴 | 𝐶.𝐶
𝐴 ::= success | failure | add(Arg, 𝑅) → 𝐴 | 𝐸 | 𝐴‖𝐴
𝐸 ::= check𝑤(Arg, 𝑅) → 𝐴 | 𝐸 + 𝐸

In Table 2, we give the definitions for the transition rules of addition (Add), check with waiting
(Chw), parallelism (Par) and nondeterminism (Ndt) operators. The transition relation → ⊆ Conf×Conf
is the least relation satisfying those rules, and it characterises the system’s evolution. In particular,
⟨𝐴,𝐹 ⟩ → ⟨𝐴′, 𝐹 ′⟩ represents a transition from a state in which we have the process 𝑃 = 𝐶 .𝐴 and the
AF 𝐹 to a state in which we have the process 𝑃 = 𝐶 .𝐴′ and the AF 𝐹 ′. An add(Arg ′, 𝑅′) results in
the addition of a set of arguments Arg ′ and a set of attacks 𝑅′ into the shared knowledge base. The
operation check𝑤(Arg ′, 𝑅′) is used to verify whether the specified arguments and attacks are contained
in the knowledge base, without introducing any further change. If the check is positive, the operation
succeeds; otherwise, it suspends. The parallel operator ‖ enables the specification of concurrent agents
following the interleaving approach. This means that only one action is executed at a time in accordance
with a scheduling imposed by the processor. The outcome of 𝐴1‖𝐴2 depends on the execution of 𝐴1

and 𝐴2: the parallel composition succeeds only if both succeed. Finally, any agent composed through
nondeterminism (operator +) is chosen if its guards succeed. In detail, a guarded agent 𝐸1 transits to
agent 𝐴1 whenever it can do so (first rule for (Ndt)); otherwise, both guarded agents are sent one step
forward (second rule for (Ndt)). Indeed, a guarded agent can be followed by more guarded agents, all
of whom must be satisfied for the operation to succeed. Until 𝐸1 transits to 𝐴1 (or 𝐸2 to 𝐸2), both
guarded agents are run simultaneously to ensure true concurrency during execution.

Table 2
cla operational semantics: add, check and parallel operators

⟨add(Arg ′, 𝑅′) → 𝐴, ⟨Arg, 𝑅⟩⟩ −→ ⟨𝐴, ⟨Arg ∪ Arg ′, 𝑅 ∪𝑅′′⟩⟩
with 𝑅′′ = {(𝑎, 𝑏) ∈ 𝑅′ | 𝑎, 𝑏 ∈ Arg ∪ Arg ′}

Add

Arg ′ ⊆ Arg ∧𝑅′ ⊆ 𝑅

⟨check𝑤(Arg ′, 𝑅′) → 𝐴, ⟨Arg, 𝑅⟩⟩ −→ ⟨𝐴, ⟨Arg, 𝑅⟩⟩
Chw

⟨𝐴1, 𝐹 ⟩ −→ ⟨𝐴′
1, 𝐹

′⟩
⟨𝐴1‖𝐴2, 𝐹 ⟩ −→ ⟨𝐴′

1‖𝐴2, 𝐹
′⟩

⟨𝐴2‖𝐴1, 𝐹 ⟩ −→ ⟨𝐴2‖𝐴′
1, 𝐹

′⟩

⟨𝐴1, 𝐹 ⟩ −→ ⟨success, 𝐹 ′⟩
⟨𝐴1‖𝐴2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹

′⟩
⟨𝐴2‖𝐴1, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ′⟩

Par

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩
⟨𝐸1 + 𝐸2, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩
⟨𝐸2 + 𝐸1, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐸′
1, 𝐹 ⟩, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐸′

2, 𝐹 ⟩
⟨𝐸1 + 𝐸2, 𝐹 ⟩ −→ ⟨𝐸′

1 + 𝐸′
2, 𝐹 ⟩

Ndt

A web interface running a cla interpreter [19] is also available.1 To comply with the syntax of the
tool, we will denote check𝑤(𝐴𝑟𝑔,𝑅) by checkw(Arg,R) and 𝐸 + · · ·+ 𝐸 by sum(E,...,E).

1cla web interface: https://conarg.dmi.unipg.it/cla/.

https://conarg.dmi.unipg.it/cla/


3. Semantic Dependency of Arguments

In AFs, cycles represent intricate situations where arguments interact with each other in a circular man-
ner, thus not providing an unambiguous interpretation for their acceptability. The circular dependency
among arguments poses an issue even when attempting to reconstruct the argumentative process that
led to the instantiation of a considered AF. An initial attempt to solve this problem is made by resorting
to the feasible evaluation order of Definition 3, which involves treating arguments within the cycles as
a single entity. Arguments attacked by this entity must always come before it, and those attacking it
must always come after. Although the feasible evaluation order provides a workaround to the problem,
choosing which argument to evaluate first within a cycle remains arbitrary. For instance, any feasible
evaluation order for the AF of Figure 1 will place 𝑎 as the first element and either 𝑒 or 𝑓 as the last,
with 𝑏, 𝑐, and 𝑑 appearing interchangeably right after 𝑎. In this section, we introduce a mechanism for
refining the evaluation order within cycles through the notion of semantic dependency. The idea is that
if the inclusion of an argument in a cycle does not alter the acceptability state of the other arguments
within that cycle, then the argument can be introduced without being constrained by the dependency
arising from the attacks it conducts.

The feasible evaluation order between two arguments 𝑎 and 𝑏 only considers syntactic dependency, i.e.,
whether an attack exists between 𝑎 and 𝑏. This dependency does not involve reasoning at the semantic
level, where the acceptability of arguments is asserted. However, studying how the acceptability state
of argument changes as the debate unfolds is a key component for handling dynamics in AFs. When
a new argument is proposed (added to the framework), its interaction with the already existing part
of the AF may change the other arguments’ acceptability state. With only the static representation
of the debate, rendered through the AF, at our disposal, we can question which arguments, and in
particular which attacks among them, are necessary to assert acceptability and which are negligible. In
practice, if removing the attack conducted by an argument 𝑏 towards another argument 𝑎 changes the
label of 𝑎, we conclude that 𝑎 semantically depends on 𝑏. For the sake of a simpler notation, we will
focus on the grounded semantics, which yields a unique labelling 𝐿. Regardless, extending the study
to accommodate other semantics (like the complete one), which may involve multiple labellings, is
straightforward.

Definition 4 (Semantic Dependency). Given an AF 𝐹 = ⟨Arg, 𝑅⟩ and two arguments 𝑎, 𝑏 ∈ Arg,
let 𝐺 = ⟨Arg, 𝑅 ∖ {(𝑏, 𝑎)}⟩. We say that 𝑎 semantically depends on 𝑏 if and only if 𝐿𝐹 (𝑎) ̸= 𝐿𝐺(𝑎).
Otherwise, we say that 𝑎 is semantically independent of 𝑏.

Since the attack relation in AFs is asymmetric, semantic dependency is inherently asymmetric as
well. Moreover, it is evident that an argument is semantically independent of all other arguments that
do not directly or indirectly attack it.

Notation 2 (Invariant Attack). Let 𝐹 = ⟨Arg, 𝑅⟩ be an AF, where 𝑎, 𝑏 ∈ Arg are two arguments such
that (𝑏, 𝑎) ∈ 𝑅. We say that (𝑏, 𝑎) is an invariant attack if 𝑎 is semantically independent of 𝑏.

Removing multiple invariant attacks is not guaranteed, in general, to leave the labelling unaltered.
For instance, removing the invariant attacks (𝑒, 𝑑) and (𝑒, 𝑓) from the AF of Figure 1 changes the label
of 𝑑 from OUT to UND.

Figure 2: Example of an AF with the grounded labelling. Green arguments are IN, while red ones are OUT.



Example 2. Consider now the cycle {𝑏, 𝑐, 𝑑} illustrated in Figure 2. From the syntactical perspective, we
observe that 𝑑 depends on 𝑐, 𝑐 depends on 𝑏, and 𝑏, in turn, depends on 𝑑, creating a circular dependency.
However, when analysing the situation at the semantic level, through the lens of grounded labelling, we find
that only 𝑏 semantically depends on 𝑐, whereas 𝑐 and 𝑑 do not semantically depend on 𝑑 and 𝑏, respectively.
In fact, excluding the attack (𝑐, 𝑏) for the assessment of argument acceptability, 𝑏 would receive the label
IN. On the other hand, (𝑏, 𝑑) and (𝑑, 𝑐) are invariant attacks since 𝑑 is rendered OUT by 𝑒, while 𝑐 is IN
in any case. Extending the analysis to arguments outside the cycle, we also find that 𝑑 is semantically
independent of 𝑒 since excluding the attack (𝑒, 𝑑) would still result in 𝑑 being labelled as OUT.

We use semantic dependency to refine the approach for evaluating arguments within cycles, specif-
ically releasing syntactic dependencies that hinder the identification of the initial argument to be
included. The idea is to evaluate first in each cycle one of the sink arguments (not attacking other
arguments in the cycle) obtained by eliminating invariant attacks. Referring again to Figure 2, we want
to select either 𝑏 or 𝑑 as the first argument to evaluate within the cycle. Indeed, they both conduct
invariant attacks on other arguments in the cycle (𝑏 towards 𝑑 and 𝑑 towards 𝑐). In particular, we note
that removing the attack (𝑏, 𝑑) from the AF does not affect the labelling, indicating that 𝑏’s syntactic
dependence on 𝑑 is irrelevant to the study of the semantics. Following this observation, we may
disregard (𝑏, 𝑑) and justifiably designate 𝑏 as the first argument of the cycle to be evaluated.

Notation 3 (Invariant Attack Sets Within Cycles). Consider an AF 𝐹 = ⟨Arg, 𝑅⟩ and let 𝑅 = {(𝑎, 𝑏) |
(𝑎, 𝑏) ∈ 𝑅∧ 𝑏 ∈ CiD(𝑎)} the set of attacks between arguments within a cycle. Then 𝐼 ⊆ 𝑅 is an invariant
attack set within cycles of 𝐹 if, given 𝐺 = ⟨Arg, 𝑅 ∖ 𝐼⟩, we have that 𝐿𝐹 (𝑎) = 𝐿𝐺(𝑎). Moreover, we
denote with ℐ the set of all invariant attack sets within cycles of 𝐹 .

Definition 5 (Semantics-Aware Evaluation Order). Let 𝐹 = ⟨Arg, 𝑅⟩ be an AF, and ℐ the set of all
invariant attack sets within cycles of 𝐹 . A semantics-aware evaluation order for 𝐹 is a numbering
𝑛 : Arg → N such that 𝑛 is a feasible evaluation order for 𝐺 = ⟨Arg, 𝑅 ∖ 𝐼⟩, where 𝐼 ∈ ℐ and

• ∄𝐼 ′ ∈ ℐ such that |ArC(⟨Arg, 𝑅 ∖ 𝐼 ′⟩)| < |ArC(𝐺)|;
• ∄𝐼 ′′ ∈ ℐ such that 𝐼 ′′ ⊂ 𝐼 and |ArC(⟨Arg, 𝑅 ∖ 𝐼 ′′⟩)| = |ArC(𝐺)|.

In the definition above, 𝐼 represents the specific subset of attacks within the set ℐ that, when
removed from the set 𝑅, results in the minimum number of arguments involved in cycles within
the AF ⟨Arg, 𝑅 ∖ 𝐼⟩. Breaking a cycle by exploiting semantic dependency entails determining which
argument to evaluate first. Once this argument has been found, all others in the cycle can be processed
following their syntactic dependencies. However, in some instances, a cycle might include all arguments
semantically dependent on each other, making it impossible to identify a specific attack to remove for
rendering one of the arguments within this cycle a sink. Therefore, our goal is to minimise ArC(𝐺),
i.e., the number of arguments in cycles, rather than trying to eliminate all the cycles, which may not
be possible. Additionally, 𝐼 is the minimal set with respect to set inclusion among all elements of ℐ
ensuring the smallest number of arguments in cycles is attained. This further minimisation allows the
initial AF to change as little as possible to reconstruct its instantiation process.

Example 3. Resuming from Example 2, we have that ℐ = {∅, {(𝑏, 𝑑)}, {(𝑑, 𝑐)}, {(𝑏, 𝑑), (𝑑, 𝑐)}} is the
set of all invariant attack sets within cycles for the AF 𝐹 ⟨Arg, 𝑅⟩ in Figure 2. In this set, both {(𝑏, 𝑑)}
and {(𝑑, 𝑐)} are such that the removal of one of them eliminates the only cycle in the AF, and no smaller
attack set does so. Following Definition 5, we can obtain two refined AFs: 𝐺 = ⟨Arg, 𝑅 ∖ {(𝑏, 𝑑)}⟩, and
𝐺′ = ⟨Arg, 𝑅∖{(𝑑, 𝑐)}⟩. For 𝐺, we find two feasible evaluation orders, (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) and (𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑒),
while 𝐺′ allows for 32 possible feasible evaluation orders, corresponding to any permutation of the six
arguments in the AF following the partial order “𝑎 precedes 𝑏; 𝑏 precedes 𝑐; 𝑑 precedes 𝑏, 𝑒, and 𝑓”. All these
orders are semantics-aware evaluation orders for 𝐹 .

A thorough study of the complexity of calculating a semantics-aware evaluation order for an AF
would require a more in-depth analysis, which is beyond the scope of this paper. As a preliminary



consideration, we observe that the problem of finding invariant attacks is related to establishing a
semantic equivalence between two AFs, which is generally intractable [20]. However, this problem
might be simplified in the case where the compared AFs share the same set of arguments [21].

In general, feasible evaluation order and semantics-aware evaluation order are not related. Among
all the semantics-aware evaluation orders for 𝐹 , only (𝑎, 𝑏, 𝑑, 𝑐, 𝑒, 𝑓), (𝑎, 𝑏, 𝑑, 𝑐, 𝑓, 𝑒), (𝑎, 𝑑, 𝑏, 𝑐, 𝑒, 𝑓),
and (𝑎, 𝑑, 𝑏, 𝑐, 𝑓, 𝑒) are also feasible evaluation orders for 𝐹 since Definition 3 requires that 𝑎 always
be evaluated first and does not allow 𝑒 and 𝑓 to be evaluated before 𝑏 and 𝑐. Moreover, considering
𝐹 , (𝑎, 𝑐, 𝑑, 𝑏, 𝑒, 𝑓) is a feasible evaluation order but not a semantics-aware evaluation order since the
semantic dependency of 𝑏 on 𝑐 is not taken into account. Below, we show that for any AF it is always
possible to find at least one feasible evaluation order that is also a semantics-aware evaluation order.

Proposition 1. Given an AF 𝐹 = ⟨Arg, 𝑅⟩, there exists a numbering 𝑛 : Arg → N such that 𝑛 is a
feasible evaluation order and a semantics-aware evaluation order for 𝐹 .

Proof. It is sufficient to observe that for any AF, it is always possible to find a semantics-aware evaluation
order such that for every cycle 𝐶 , all arguments belonging to 𝐶 are evaluated before the arguments
attacking it. If none of the attacks between arguments in 𝐶 is invariant, the semantics-aware evaluation
order collapses to a feasible evaluation order, as an argument in the cycle is chosen nondeterministically
to be evaluated first. If 𝐶 includes an argument 𝑎 conducting an invariant attack towards another
argument 𝑏 within the cycle, disregarding the presence of (𝑎, 𝑏), it is possible to evaluate the nodes
within the cycle starting from 𝑎 and ending at 𝑏. The order obtained in both cases is a feasible evaluation
order by Definition 3.

4. Semantics-Aware Evaluation Order in Small Real-World Scenarios

In this section, we illustrate with two examples of how the semantics-aware evaluation order can be
employed to reconstruct the progression of a debate by studying the sequence in which arguments might
have been introduced. The first example, taken from [22], reflects Anna’s reasoning about the suitability
of an apartment for rent, and was designed as a case study for a Temporal AF that incorporates the
availability of arguments over time. Using an AF already tailored for dynamic contexts aligns perfectly
with our objectives. Figure 3 shows the reference AF for this example, with the arguments listed
below. Originally comprising five arguments, we expanded the example by incorporating arguments
𝑓 and 𝑔, along with the attacks (𝑏, 𝑓), (𝑓, 𝑐) and (𝑔, 𝑓) which generate a cycle. This addition further
demonstrates the effectiveness of the proposed methodology. Note that the arguments we consider are
abstract and are associated here with natural language sentences for exemplification only.

Figure 3: AF with grounded labelling presenting Anna’s reasoning about renting an apartment.

a: Anna should rent the apartment she found.
b: The apartment seems to have humidity problems.
c: The owner is committed to solving structural problems in the apartment.
d: A nightclub is set to open nearby shortly.
e: Laws forbid the opening of nightclubs in the area.
f: The owner, planning to sell the property soon, is unlikely to fund long-term repairs.



g: Due to legal constraints, the apartment cannot be sold immediately.

Let us call 𝐹 the AF in Figure 3 . The portion of 𝐹 that is most interesting to analyse for this
example is the cycle formed by the arguments 𝑏, 𝑐 and 𝑓 . The situation described is as follows: humidity
problems compromise the plan to sell the apartment shortly – (𝑏, 𝑓); intent on selling, the owner is
not interested in structural work on the property – (𝑓, 𝑐); the owner is committed on solving the
humidity problem – (𝑐, 𝑏). The presence of this cycle results in the identification of possible less
meaningful argument orderings when only using the syntactic dependency generated by attacks.
Take, for instance, the sequence (𝑎, 𝑑, 𝑒, 𝑐, 𝑏, 𝑓, 𝑔), which represents an evaluation order for 𝐹 . The
placement of 𝑐 before 𝑏 in this sequence may not reflect a realistic scenario. Essentially, evaluating the
owner’s commitment (𝑐) before acknowledging the humidity problems (𝑏) may lead Anna to initially
feel reassured about the apartment’s issues, only to realise later on that there are specific, potentially
unaddressed problems. This sequence might not provide the most logical flow for decision-making.
It would be more realistic for Anna to first consider the potential issue (𝑏) before contemplating the
owner’s commitment (𝑐), thereby creating a more logical dialogue as she considers her options. We
show that (𝑎, 𝑑, 𝑒, 𝑐, 𝑏, 𝑓, 𝑔) is not a semantics-aware evaluation order for 𝐹 . First, we identify the set
ℐ = {∅, {(𝑏, 𝑓)}, {(𝑓, 𝑐)}, {(𝑏, 𝑓), (𝑓, 𝑐)}} of all invariant attack sets within cycles of 𝐹 . It is easy to
verify that all attacks in elements of ℐ are either from OUT to IN arguments or from OUT to OUT. Since
there is no 𝐼 ∈ ℐ such that (𝑐, 𝑏) ∈ 𝐼 , according to Definition 5, it is impossible for a semantics-aware
evaluation order to evaluate argument 𝑐 before 𝑏.

On the other hand, sequences such as (𝑎, 𝑑, 𝑒, 𝑏, 𝑐, 𝑓, 𝑔), (𝑎, 𝑑, 𝑒, 𝑓, 𝑔, 𝑏, 𝑐), and (𝑓, 𝑔, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒)
qualify as semantics-aware evaluation orders. To substantiate this claim, we search for minimal sets
𝐼 ∈ ℐ for which 𝐺 = ⟨Arg, 𝑅∖ 𝐼⟩ is acyclic. Both {(𝑏, 𝑓)} and {(𝑓, 𝑐)} are viable candidates as minimal
attack invariant sets. Considering the invariant attack (𝑏, 𝑓) for removal, permits 𝑏 to be evaluated
directly after 𝑎, 𝑐 after 𝑏, and 𝑓 subsequent to 𝑐, giving rise to orders like (𝑎, 𝑑, 𝑒, 𝑏, 𝑐, 𝑓, 𝑔). Alternatively,
when removing (𝑓, 𝑐), 𝑓 becomes a sink argument in 𝐺 = ⟨Arg, 𝑅 ∖ {(𝑓, 𝑐)}⟩, allowing its evaluation
at any stage; thus, 𝑏 follows 𝑎 and 𝑓 , 𝑔 comes after 𝑓 , and 𝑐 after 𝑏. Consequently, orders such as
(𝑎, 𝑑, 𝑒, 𝑓, 𝑔, 𝑏, 𝑐) and (𝑓, 𝑔, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒) are possible under these conditions.

For the next example, we use a deliberation dialogue extracted from [23], focusing on modelling
information exchange for managing shared resources. The dialogue features three participants: Alice, a
farmer; Bob, an oyster farmer; and Carol, a government representative. They are engaged in a discussion
concerning the effects of fertilisers on oysters, as delineated below. The reference AF, which we will
call 𝐷, is shown in Figure 4. We adjusted the original example to enhance its relevance for our study,
resulting in the emergence of two distinct cycles: {𝑎, 𝑐, 𝑒, 𝑑} and {𝑎, 𝑓, 𝑔, 𝑏}.

Figure 4: AF with grounded labelling exploring the impact of fertilisers on oysters.

a: (Alice) Using a lot of fertiliser helps to have a big yield.
b: (Bob) Using a lot of fertiliser pollutes the lake and harms the oyster.
c: (Carol) Low-income farms incur significant fertiliser costs, attracting authority attention.
d: (Carol) Using more fertiliser than the norm implies a fine.
e: (Alice) There is no risk of being controlled because of lack of means.
f: (Carol) Farms bear significant expenses to mitigate the harmful impacts of pesticides.
g: (Alice) Lake pollution is not linked to pesticides.



h: (Bob) The studies conducted on the groundwater were inaccurate.

To compute a semantics-aware evaluation order, we must identify beforehand a minimal invariant
attack set within cycles of 𝐷 = ⟨Arg, 𝑅⟩ capable of minimising, upon its removal, the number of
arguments within cycles. Since we have two cycles in 𝐷, we want to remove exactly two invariant
attacks, one from each cycle. Within {𝑎, 𝑐, 𝑒, 𝑑}, we find three invariant attacks: (𝑎, 𝑐), (𝑑, 𝑎), and
(𝑒, 𝑑), while in {𝑎, 𝑓, 𝑔, 𝑏} we find four: (𝑎, 𝑓), (𝑏, 𝑎), (𝑓, 𝑔), and (𝑔, 𝑏). Only some pairs combining
invariant attacks from each cycle belong to ℐ . For instance, the pair {(𝑏, 𝑎), (𝑑, 𝑎)} is not an invariant
attack set within cycles of 𝐷 since 𝐿𝐷(𝑎) = OUT ̸= IN = 𝐿𝐻(𝑎) with 𝐻 = ⟨Arg, 𝑅 ∖ {(𝑏, 𝑎), (𝑑, 𝑎)}⟩.
This illustrates why, to maintain a coherent debate flow where counterarguments are effectively
positioned, Alice’s argument (𝑎) that using a lot of fertiliser helps to have a big yield should logically
precede at least one between Bob’s argument (𝑏) that using a lot of fertiliser pollutes the lake and
harms the oyster, or Carol’s argument (𝑑) that using more fertiliser than the norm implies a fine.
In total, we find eleven minimal invariant attack set within cycles of 𝐷 such that their removal
produces an acyclic AF: {(𝑎, 𝑐), (𝑎, 𝑓)}, {(𝑎, 𝑐), (𝑓, 𝑔)}, {(𝑎, 𝑐), (𝑔, 𝑏)}, {(𝑏, 𝑎), (𝑎, 𝑐)}, {(𝑏, 𝑎), (𝑒, 𝑑)},
{(𝑑, 𝑎), (𝑎, 𝑓)}, {(𝑑, 𝑎), (𝑓, 𝑔)}, {(𝑑, 𝑎), (𝑔, 𝑏)}, {(𝑒, 𝑑), (𝑎, 𝑓)}, {(𝑒, 𝑑), (𝑓, 𝑔)}, {(𝑒, 𝑑), (𝑔, 𝑏)}.

For instance, if we select {(𝑑, 𝑎), (𝑔, 𝑏)}, we can obtain the semantics-aware evaluation order
(𝑑, 𝑒, 𝑐, 𝑔, ℎ, 𝑓, 𝑎, 𝑏). Following this order, the debate would start with Carol highlighting the potential
fines for using more fertiliser than normative levels (𝑑), setting a regulatory tone. Alice quickly counters
by questioning the effectiveness of such controls due to limited enforcement resources (𝑒). Carol
responds by pointing out the significant financial burden on low-income farms from high fertiliser
costs, which attracts more regulatory scrutiny (𝑐), contrasting with Alice’s point about enforcement
challenges. Alice then shifts the topic slightly by denying any link between lake pollution and pesticides
(𝑔), possibly trying to deflect from broader environmental concerns. Bob introduces a twist by ques-
tioning the accuracy of groundwater studies (ℎ), which casts doubt on all environmental impact claims
discussed. Carol continues by examining farms’ economic burden in mitigating the negative effects of
pesticides (𝑓 ), countering Alice’s previous assertions. Alice then praises the agricultural benefits of
high fertiliser use, emphasising increased yields (𝑎). Bob wraps up the discussion by focusing on the
environmental damages of excessive fertiliser use, specifically highlighting the pollution of lakes and
the harm to oysters (𝑏), directly opposing Alice’s utilitarian view and bringing the debate full circle to
the consequences of agricultural practices on the environment.

5. Automatic Instantiation of AFs with cla
Identifying invariant attacks is a key step in establishing a semantics-aware evaluation order. The
problem of detecting modifications at the syntactic level of AFs that do not affect the semantics has
already been addressed in the literature with different approaches and methodologies, e.g., [14, 21].
In [14], the authors discuss the persistence of semantics after the removal of attacks. For complete,
preferred and grounded semantics, all attacks except IN to OUT and UND to UND can be removed
without altering the label of any argument (attacks from IN to IN, from IN to UND, and from UND
to IN are considered impossible because they contravene Definition 2). Attacks satisfying removal
persistence are invariant but do not constitute the totality of invariant attacks of an AF. For example, an
attack originating from an IN argument 𝑎 to an OUT argument 𝑏 is invariant if 𝑏 is attacked by another
IN argument 𝑐. Therefore, this method is not immediately viable, as it necessitates further research to
develop a procedure capable of detecting all the attacks of interest.

In a separate line of work, Baumann has explored semantic equivalence properties between two
AFs where the second framework is derived from specific modifications made to the first [21]. Among
other aspects, his work examines semantic equivalence following the operation of local deletion, which
involves the removal of attacks between arguments. Despite lacking an operational definition for
identifying invariant attacks, we will leverage this concept to automate the process of identifying such
attacks.



More in detail, we are interested in finding sets of attacks 𝐼 with the properties described in Defi-
nition 5: 𝐼 must be the smallest set whose removal minimises the number of arguments involved in
cycles of an AF without changing the state of acceptability of the arguments. To approach this problem,
we propose an implementation in Answer Set Programming (ASP) [24], a type of logic programming
that operates based on the answer set semantics. In this framework, solutions to a specific problem
are delineated as selected models, or answer sets, of the associated logic program. ASP is particularly
well-suited for the specific task of minimising the number of arguments belonging to cycles of AFs
while preserving argument acceptability due to its inherent strengths in handling complex search and
optimisation problems within combinatorial decision-making environments.

5.1. ASP Optimization for Minimal Invariant Attack Sets

We outline the main passages of the proposed APS implementation, consisting of rules for determining
paths and cycles, attacks to remove, grounded labelling, and semantic equivalence, alongside necessary
minimisations. The complete code can be found in the appendix of this paper. The initial step in our
program involves supplying an AF in the ASPARTIX format [25], which entails defining arguments
and attacks using respectively the predicates arg/1 and att/2. Afterwards, we define a choice rule
{ remove(X, Y) : att(X, Y) } that allows any attack (𝑋,𝑌 ) to be considered for removal based
on the criteria set later in the program. We also include definitions for paths and membership in a cycle
before and after the potential removal of attacks. For example, a path from 𝑋 to 𝑌 in the modified AF
exists if 𝑋 attacks 𝑌 and the attack (𝑋,𝑌 ) has not been removed.

To ensure that the labels assigned to arguments will not change after the attacks are removed, we
must first obtain a grounded labelling for the AF before and after the modifications. We specify rules
reflecting the conditions given in Definition 2 for labelling the AF before and after the changes. In
particular, we explicitly declare that an argument is labelled UND if it is neither IN nor OUT. We also
introduce a constraint imposing that exactly one label can be assigned to each argument. Then, we
obtain the grounded labelling by minimising the number of IN labels assigned to arguments of the AF.

At this point, we impose the semantic equivalence constraint between the original AF and that
obtained after removing the attacks. Concretely, we require that if an argument 𝑋 has a certain label
before removal, this label is maintained after removal. Next, we give two optimisation statements to
minimise the number of arguments that are part of cycles and the number of attacks to be removed.
Finally, we filter the output to display only instances of the remove/2 predicate, showing which attacks
are chosen for removal.

5.2. A cla Program to Instantiate AFs

We now show how AFs can be instantiated through cla constructs [18] which introduce arguments
following a semantics-aware evaluation order. A key feature of cla is its ability to handle concurrency
and nondeterminism, enabling the simulation of the dynamic aspects of real-life debates. The cla
program provided in Listing 1 realises the AF of Figure 4 by taking into account syntactic and semantic
dependencies between arguments. All arguments, except for 𝑑 and 𝑔, are integrated into the debate
only when their syntactic dependencies are satisfied (Listing 1, lines 3− 10). In detail, the instruction
checkw({c,f},{}) -> add({a},{(a,f),(a,c)}) -> success) -> success adds 𝑎 and its
attacks into the shared knowledge base only when both 𝑐 and 𝑓 (the attacked arguments) are already
present. No check is made for 𝑑 and 𝑔, so these arguments can immediately be added (lines 6 and
9, respectively), ignoring their syntactic dependencies. 𝐼 = {(𝑑, 𝑎), (𝑔, 𝑏)} is a minimal invariant
attack set in the sense of Definition 5, hence the invariant attacks (𝑑, 𝑎) and (𝑔, 𝑏) have initially been
ignored to break the two cycles in the AF. They are incorporated afterwards (lines 1− 2) when all the
arguments they involve have already been added. All the instructions are executed in parallel, enabling
the addition of each argument as soon as the conditions in the guarded agent are satisfied. It follows
that every sequence of additions obtained as an execution trace of the program in Listing 1 enumerates
the arguments in a semantics-aware evaluation order.



Listing 1: cla program instantiating the AF of Figure 4.

1 checkw ( { d , a } , { } ) −> add ( { } , { ( d , a ) } ) −> s u c c e s s | |
2 checkw ( { g , b } , { } ) −> add ( { } , { ( g , b ) } ) −> s u c c e s s | |
3 checkw ( { c , f } , { } ) −> add ( { a } , { ( a , f ) , ( a , c ) } ) −> s u c c e s s | |
4 checkw ( { a } , { } ) −> add ( { b } , { ( b , a ) } ) −> s u c c e s s | |
5 checkw ( { e } , { } ) −> add ( { c } , { ( c , e ) } ) −> s u c c e s s | |
6 add ( { d } , { } ) −> s u c c e s s | |
7 checkw ( { d } , { } ) −> add ( { e } , { ( e , d ) } ) −> s u c c e s s | |
8 checkw ( { g } , { } ) −> add ( { f } , { ( f , g ) } ) −> s u c c e s s | |
9 add ( { g } , { } ) −> s u c c e s s | |

10 checkw ( { g } , { } ) −> add ( { h } , { ( h , g ) } ) −> s u c c e s s ;

We provide a procedure, illustrated in Algorithm 1, for automatically obtaining a cla program
that builds an AF by adding arguments in semantics-aware evaluation order. Our input is an AF
𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩, while the output is a string corresponding to a cla program. The procedure initiates
by invoking find_minimal_invariant_attack_set(𝐹 ) (line 2 of Algorithm 1), namely a call to
the ASP program described in Section 5.1 used for identifying a set 𝐼 of attacks that, when removed,
left the AF with the minimum number of arguments in circular dependency. Subsequently, in line 3,
we define 𝐺 as the AF obtained from 𝐹 by removing the attacks in 𝐼 . Afterwards, the process starts
to generate the cla program. This phase is divided into two steps. Initially, we write cla instructions
to add all attacks within 𝐼 into the shared knowledge base (lines 5− 6), provided that all arguments
engaged in these attacks have already been added. Then, we call the procedure gen_cla_prog(𝐺)
described in [16], which generates a cla program for instantiating 𝐺 while ensuring the arguments are
added in a feasible evaluation order.

Algorithm 1: Procedure for generating a cla program to instantiate a specified AF.
Data: AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩
Result: string 𝑆

1 procedure gen_cla_prog_saeo(𝐹):
2 I = find_minimal_invariant_attack_set(𝐹 ) // I: set of attacks
3 𝐺 = ⟨𝐴𝑟𝑔,𝑅 ∖ 𝐼⟩
4 𝑆 = “”
5 foreach (𝑎, 𝑏) in 𝐼 do
6 𝑆 = 𝑆 + “checkw({𝑎, 𝑏}, {}) −> add({}, {(𝑎, 𝑏)}) −> success ‖ ”
7 𝑆 = 𝑆 + gen_cla_prog(𝐺)

The program resulting from the Algorithm 1 allows the shared knowledge base to be manipulated to
shape the desired AF. This instantiation involves the addition of arguments according to the syntactic
and semantic dependency relations dictated by the attacks within the framework. Due to the inclusion
of parallel and nondeterministic operations, multiple unique executions may occur, leading to different
(semantics-aware evaluation) orders for the addition of arguments.

6. Conclusion

A semantics-aware evaluation order introduces the arguments in a meaningful sequence, simulating
what might have happened during the instantiation of the AF under consideration. Arguments that
receive attacks are evaluated before those that initiate them, except for one argument per cycle, whose
invariant attack is bypassed to allow the other arguments for proper evaluation. "The refined framework
𝐺, obtained as per Definition 5, can still contain cycles since it is possible that no invariant attack is
identified within some cycles, necessitating the adoption of an arbitrary sequence provided by the
feasible evaluation order for arguments involved in circular dependencies. Furthermore, multiple
arguments conducting invariant attacks may be candidates within a cycle for initial evaluation. Even



in such scenarios, there is no specific criterion for prioritising one argument over others for being
evaluated first. Hence, the approach with the semantics-aware evaluation order might not always
identify a single argument to evaluate first in every cycle. Nonetheless, such an order helps to limit
the cases where the choice remains arbitrary, providing more meaningful insights into the possible
sequence of arguments that constitutes the unfolding of a debate.

In the future, we plan to advance this work by studying a further evaluation approach based on three
assumptions that better capture some aspects of real argumentative processes. Firstly, we can assume
that a debate among multiple agents takes place through an exchange of arguments that replicate
and counter the arguments already introduced. Each new argument inserted must therefore keep the
graph connected. Secondly, we assume that when an agent inserts an argument, this will be labelled
IN, as no one has had the chance to reply yet. This assumption implies a different use of semantic
dependence from that presented in this paper, where instead the inserted arguments can have any
label. Finally, it is reasonable to think that new arguments must change the acceptability of some other
argument in the AF, otherwise there would have been no reason to insert such an argument. With these
assumptions, we obtain sequences of arguments that could closely mirror argumentation processes with
the outlined characteristics, though this approach may narrow the scope of application. For example,
the semantics-aware evaluation order allows new arguments to be inserted without being connected to
the previously instantiated part of the AF.
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Appendix

Listing 2 provides an ASP implementation designed to identify the smallest set of attacks whose
elimination minimises the number of arguments involved in cycles within an AF while maintaining the
original acceptability state of the arguments.

Listing 2: ASP Implementation for Minimal Invariant Attack Sets.

1 % AF p r o v i d e d i n a s e p a r a t e f i l e
2 # i n c l u d e " a f . l p " .
3
4 % Choice r u l e f o r a t t a c k s t o remove
5 { remove ( X , Y ) : a t t ( X , Y ) } .
6
7 %P a t h s and c y c l e s
8 path ( X , Y ) : − a t t ( X , Y ) .
9 path ( X , Y ) : − path ( X , Z ) , a t t ( Z , Y ) .

10 p a t h _ a f t e r ( X , Y ) : − a t t ( X , Y ) , not remove ( X , Y ) .
11 p a t h _ a f t e r ( X , Y ) : − p a t h _ a f t e r ( X , Z ) , a t t ( Z , Y ) , not remove ( Z , Y ) .
12 i n _ c y c l e (X ) : − path ( X , X) .
13 i n _ c y c l e _ a f t e r (X ) : − p a t h _ a f t e r ( X , X) .
14
15 %Grounded l a b e l l i n g
16 i n (X) : − arg (X) , not h a s _ n o n _ o u t _ a t t a c k e r (X ) .
17 h a s _ n o n _ o u t _ a t t a c k e r (X ) : − a t t ( Y , X ) , a rg ( Y ) , not out ( Y ) .
18 out (X ) : − arg (X) , a t t ( Y , X ) , a rg ( Y ) , i n ( Y ) .
19 und (X) : − arg (X) , not i n (X) , not out (X ) .
20 : − arg (X) , not 1 { i n (X) ; out (X ) ; und (X) } 1 .
21 # minimize { 1@4, X : i n (X) } .
22
23 %Grounded l a b e l l i n g a f t e r the removal
24 i n _ a f t e r (X ) : − arg (X) , not has_non_o_a_a (X) .
25 has_non_o_a_a (X) : − a t t ( Y , X ) , a rg ( Y ) , not o u t _ a f t e r ( Y ) , not remove ( Y , X ) .
26 o u t _ a f t e r (X ) : − arg (X) , a t t ( Y , X ) , a rg ( Y ) , i n _ a f t e r ( Y ) , not remove ( Y , X ) .
27 u n d _ a f t e r (X ) : − arg (X) , not i n _ a f t e r (X ) , not o u t _ a f t e r (X ) .
28 : − arg (X) , not 1 { i n _ a f t e r (X ) ; o u t _ a f t e r (X ) ; u n d _ a f t e r (X ) } 1 .
29 # minimize { 1@3, X : i n _ a f t e r (X ) } .
30
31 %Semant i c e q u i v a l e n c e
32 : − i n (X ) , not i n _ a f t e r (X ) .
33 : − out (X) , not o u t _ a f t e r (X ) .
34 : − und (X) , not u n d _ a f t e r (X ) .
35
36 %M i n i m i s a t i o n
37 # minimize { 1@2, X : i n _ c y c l e _ a f t e r (X ) } .
38 # minimize { 1@1, X , Y : remove ( X , Y ) } .
39
40 %Output
41 #show remove / 2 .
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